Em um parque de diversões, uma criança, partindo do repouso, desce uma montanha russa de uma altura acima do solo. Supondo que não há forças dissipativas agindo na criança, a sua velocidade ao atingir o solo será de
(considere a aceleração da gravidade $\pu{10 m/s^2}$)
CossenoGPT
Teste
gratuitamente agora
mesmo! 

Note que toda a energia potencial $mgh$ armazenada pela criança foi transformada em energia cinética $\dfrac{mv^2}{2 }$ quando este atinge o solo , podemos escrever dessa forma que
$mgh = \dfrac{mv^2}{2 }\implies 2gh = v^2 = 2 \cdot 10 \cdot 20 = v^2 = 400$
$\implies \boxed{v = 20 \text{ m}/\text{s}}$
$\text{Resposta : Alternativa C}$
Pela Equação de Torricelii:
$V^2 = 2\cdot 10 \cdot H$ $\implies$ $V^2 = 400$, $V>0$, então $\boxed{V = 20}$, em $m/s$.