Assinale a opção que indica a soma dos elementos de $A\cup B$, sendo:$$A=\left\{x_k=\sin^2\left(\frac{k^2\pi}{24}\right): k = 1,2\right\}$$ $$B=\left\{y_k=\sin^2\left(\frac{(3k+5)\pi}{24}\right): k = 1,2\right\}$$


img
ITA IIIT 20/12/2021 14:28
Do enunciado, podemos escrever:\begin{matrix} A &=& \{ & \sin^2{(\frac{\pi}{24})} & , & \sin^2{(\frac{\pi}{6})} & \} \\ B &=& \{ & \sin^2{(\frac{\pi}{3})} & , & \sin^2{(\frac{11\pi}{24})} & \} \end{matrix} \begin{matrix} \color{gray}{\fbox{ $\begin{matrix} \sin{\alpha} = \cos{(\frac{\pi}{2}- \alpha)} \\ \sin^2{\alpha} + \cos^2{\alpha}= 1 \end{matrix}$}} \end{matrix} \begin{matrix} A &=& \{ & \sin^2{(\frac{\pi}{24})} & , & \frac{3}{4} & \} \\ B &=& \{ & \frac{1}{4} & , & \cos^2{(\frac{\pi}{24})} & \} \end{matrix} \begin{matrix} \color{gray}{\fbox{$ \sin^2{(\frac{11\pi}{24})} = \cos^2{(\frac{\pi}{2} - \frac{11\pi}{24})} = \cos^2{(\frac{\pi}{24})} $}} \end{matrix} \begin{matrix} A \cup B &=& \bigg\{ & \sin^2{(\frac{\pi}{24})} & , & \dfrac{3}{4} &,& \dfrac{1}{4} &,& \cos^2{(\frac{\pi}{24})} & \bigg\} \\ \end{matrix}Assim, a soma:\begin{matrix} \left[\sin^2{(\frac{\pi}{24})} + \dfrac{3}{4} \right] &+& \left[ \dfrac{1}{4} + \cos^2{(\frac{\pi}{24})} \right] \\ \end{matrix}\begin{matrix} \fbox{$1 + \dfrac{3}{4} + \dfrac{1}{4} = 2$} \\ \\ Letra \ (C) \end{matrix}
Modo de Edição
0 / 5000
ManualLaTeX