Duas lâmpadas incandescentes, cuja tensão nominal é de $110\ V$, sendo uma de $20\ W$ e a outra de $100\ W$, são ligadas em série em uma fonte de $220\ V$. Conclui-se que:


img
ITA IIIT 14/04/2022 19:43
$-$ Conhecida a tensão e potências nominais das lâmpadas, e admitindo desprezível efeitos de temperatura, temos a resistência de cada lâmpada como: \begin{matrix} Pot = \large{\frac{(\Delta V)^2}{R}} &\Rightarrow&R_{20W} = 11^2.5 \ \Omega &,& R_{100W} = 11^2 \ \Omega \end{matrix}$-$ Pela $\text{Primeira Lei de Ohm}$ é possível encontrar a corrente que percorre o sistema, veja: \begin{matrix} 220= (R_{20W} + R_{100W}).i &\therefore& i = {\large{\frac{10}{33}}} \ A \end{matrix}$-$ Com isso, é possível encontrar a potência dissipada por cada lâmpada:\begin{matrix} Pot = R.i^2 &\Rightarrow& Pot_{20W} = 55,\overline{5} \ W &,& Pot_{100W} = 11,\overline{1} \ W \end{matrix} Nessa perspectiva, a lâmpada de $20 \ W$ irá brilhar mais que o normal, todavia, sua vida útil cairá drasticamente, isto é, queimar-se-á.\begin{matrix} Letra \ (B ) \end{matrix}
Modo de Edição
0 / 5000