Seja um valor fixado no intervalo . Sabe-se que é o primeiro termo de uma progressão geométrica infinita de razão . A soma de todos os termos dessa progressão é:
Pensando na soma duma progressão geométrica infinita:\begin{matrix}
\overset{\infty}{\underset{i = 1}{\sum}} a_i = \dfrac{a_1}{1-q} = \dfrac{ \cot{\theta}}{1 - \sin^2{\theta}} = \dfrac{ \cot{\theta}}{\cos^2{\theta}} = \dfrac{1}{\sin{\theta}\cos{\theta}} = \sec{\theta} \cdot \csc{\theta}
\ \ \tiny{\blacksquare}
\end{matrix}$\color{orangered}{\text{Obs:}}$ $\sin^2{\theta} + \cos^2{\theta} = 1$\begin{matrix}Letra \ (C)
\end{matrix}