Seja f:R→R tal que:f(x)=⎩⎨⎧x1,−x1,0,sex for racional,x=0se x for irracional se x=0
Seja f+:R→R tal que: f+(x)={f(x),0,sef(x)>0sef(x)≤0
Seja f−:R→R tal que: f−(x)={f(x),0,sef(x)<0sef(x)≥0
a) Calcule, caso exista:I1I2=∫12f+(x)dx=∫12[f+(x)−f−(x)]dx
b) Determine M=max(g,h) onde:g=sup{f(x)∣x∈R}−sup{f+(x)∣x∈R}h=sup{f(x)∣x∈R}−sup{f−(x)∣x∈R}