Q5 Matemática (ITA 1992)
Sabe-se que $2(\cos \pi/20 +i \sin \pi/20)$ é uma raiz quíntupla de $w$. Seja $S$ o conjunto de todas as raízes de $\displaystyle z^{4} - 2z^{2} + \frac{w - 16\sqrt{2}i}{8\sqrt{2}}=0$. Um subconjunto de $S$ é:
Sabe-se que $2(\cos \pi/20 +i \sin \pi/20)$ é uma raiz quíntupla de $w$. Seja $S$ o conjunto de todas as raízes de $\displaystyle z^{4} - 2z^{2} + \frac{w - 16\sqrt{2}i}{8\sqrt{2}}=0$. Um subconjunto de $S$ é: