Q13 Matemática (Tournament Of Towns 2015)
Seja um quadrilátero cíclico, e os pontos médios das diagonais e e os pontos de interseção das extensões dos lados opostos. Prove que . ( pontos) .
Seja um quadrilátero cíclico, e os pontos médios das diagonais e e os pontos de interseção das extensões dos lados opostos. Prove que . ( pontos) .