Q6 Matemática  (IMO 1960)

Considere um cone de revolução com uma esfera inscrita tangente à base do cone. Um cilindro é circunscrito a esta esfera de modo que uma de suas bases se encontra na base do cone. seja o volume do cone e o volume do cilindro. a) Prove que ; b) Encontre o menor número para o qual ; para este caso, construa o ângulo subtendido por um diâmetro da base do cone no vértice do cone.